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Number of almost-convex polygons on the square lattice
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Physics Department, National Tsing Hua University, Hsinchu, Riwan 300, Republic of
China

Received 22 August 1991, in final form 20 November 1991

Abstract. The generating function for the number N., of almost-convex polygons on
the square lattice with concavity index ¢ = 1 and perimeler n is derived rigorously.
The asymptotic behaviour of N, , for large n is determined and our result confirms a
recent conjecture by Enting er al.

1. Introduction

Self-avoiding polygons on regular lattices have been considered as a model of crystal
growth (Temperley 1952) or polymer (Temperley 1956, de Gennes 1979). The problem
is to determine the generating function for the number of polygons on a lattice with
given perimeter and/or area. The problem is very difficult and an exact solution is
still unknown. However several restricted classes of polygons can be enumerated and
developments were reviewed by Guttmann (1991) and Lin (1991b).

Very recently, Enting et a/ (1991) introduced a class of polygons referred to as
almost-convex. They defined a concavity index ¢ for polygons on the square lattice
by associating with each n-step polygon a minimal bounding rectangle of perimeter
rn such that ¢ = (n — m)/2. The unrestricted polygons consist of almost-convex
polygons whose concavity indices vary from zero to infirity. An almost-convex polygon
with index ¢ = n can be obtained from a polygon with index ¢ = n — 1 by removing
a mx1 or 1 xm rectangle. The number of polygons with concavity c and perimeter
n is denoted by N, . They proved that for c = O(n?/3)

N,,~Ny= 2n-2e-8pctlexp(c?/n)/cl. N
Thev alen calenlated N un to &0 steng for o = 1 10 and conjectured that
Lanvy WSV LaLuaBiLu SV, g Up W DU Suvps abs L iy ) AU AL RAFILRVL WIS Ll b

N % No[1 = 4(2/nm)!/? + O(1/n)). @

Convex polygons correspond t0 ¢ = 0. The perimeter generating function for
convex polygons was first derived by Delest and Viennot (1984) and then rederived
later by different methods (Kim 1988, Guttmann and Enting 1988, Lin and Chang
1988). The area and perimeter generating function for convex poiygons was derived
independently by Lin (1991a) and Bousequet-Melou (1991). We consider polygons
with ¢ = 1 in the present paper and derive the generating function for the number of
polygons rigorously. The conjecture (2) is verified for ¢ = 1. Note that equation (2)
also holds for ¢ = 0 (Lin and Chang 1988, Enting et a/ 1991).
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2. Polygons with concavity one

Consider a polygon on the square lattice with concavity one. Such a polygon can be
obtained from a convex polygon by removing a m x 1 (1 x m) rectangle from the
right or left (top or bottom) side as shown in figure 1. The generating function for
the number N, of such polygons with perimeter n is defined by

G(z)=G.+G+G, +G, = ZN:: (3)

n=12

where G, (G, G,, G,) generates polygons which correspond to removing a rectangle
from the right (left, top, bottom) side of convex polygons. It follows from symmetry
that G, = G, = G, = G,,.

Figure 1. A polygon with concavity one can be obtained from a convex polygon on the
square lattice by removing a 1 X n rectangle from the top side.

We shall consider the more general case of rectangular lattice in the present paper.
We define a concavity ¢ for polygons on the rectangular lattice by associating with
each 2n-step polygon an r x s minimal bounding rectangle such that ¢ = n - r ~ s,
The generating function for polygons with ¢ = 1 is defined by

Glz,y) = G(z,y) + Gz, ¥) + Gz, p) + Gylz,¥) = YD N, ,y*"z* (4
r=2s=2

where N, , is the number of polygons associated with an r x s minimal bounding
rectangle. It follows from symmetry that

Gi(z,y) = G(a,y) = Gi(y,z) = G (y, 7). ©)

Therefore we shall study G,{xz,y)} only from now on.

3. Generating function

A polvgon with ¢ = 1 can be obtained by placing one 1 x n rectangle and a top
convex polygon on the top row of the main convex polygon as shown in figure 2.
The generating functions for several classes of convex polygons are summarized
as follows. A pyramid polygon is a special case of convex polygon such that the width
at the bottom equals the width of the bounding rectangle. The generating function
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Flgure 2. -‘The first special case of polygons with concavity one where the top polygon is
an inverse corner polygon and the main polygon is an inverse pyramid polygon.

P(z,y) for the number P, , of pyramid polygons associated with an r x s minimal
bounding rectangle is

Pe,i)= 3 B = SO P,
1 =1

ra= (6)
= 2?y*(1 - 2?)/[(1 - 2*)* - ¥’
where
P =y (ul +ul)/2
with
uy =a?/(1ty)

generates polygons whose bottom-width is m (Lin and Chang 1988). Another special
case of the convex polygon is a polygon whose top right-hand corner of the bounding
rectangle is also the corner of the polygon. We shall call them corner polygons. The
generating function H(x,y) for the number H,_, of such polygons associated with
an r ¥ & minimal hnnmﬁng rpr-rnp_g!e i

o ERARERAAR A WA ARN RAE iwis

o0 o0
H(z,y)= Z Hr’serl_ls = Z H, = 22y2/A1/2 0
r,s=1 m=1

where

A=1-22? -2y 4 (2 —y?)?

H, =(Au] + A_uT) + Aw™ 3
with

A BN AN Y TR { =2

A S YL YNRLIIY— & Jf21IDYH) —& ]

A=-22y/A
w=(l+z%~ y"’—-AI/Z)/?.
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and H,, generates polygons whose width at the top row is m (Lin and Chang 1988).
The generating function R(z,y) for the number R, , of convex polygons associated
with an » x s minimal bounding rectangle is (Delest and Viennot 1984, Kim 1988,
Guttmann and Enting 1988, Lin and Chang 1988)

o0 o
R(z,y} = Z Rr8y2rz2a = E Rm
rea=1 mae=1
= 2?y*[1 - 3(z® + ) + 3(=* + y") + 52?y? — 2 — ¢
- m2y4 - ;z:‘iyi’ - m2y2(w2 _ y2)2]/A2 _ 4a:4y4//_\3/2 )
where
R, = (D,ul + D_uT}/24% + Ew™ (A3
with
D, =y’ (1)1 £y - ") [(1Fy)* - 2%)°
E = —20%%(1 - 2% — y* + A1)

and R, generates convex polygons whose width at the top row is m (Lin 1991c).

The generating function G,(«x,y) for polygons with ¢ = 1 can be derived as
follows. Consider first the case where the main polygon is an inverse pyramid and
the top polygon is an inverse corner polygon as shown in figure 2. The generating
function for such polygons is

oc

Gi(z,y)= Y. ¥ P 207 Hy,,) - v (10
a,b,c,die=1

The factor of two is due to the fact that there are two ways to put the 1 x n
rectangle on the top of the main polygon (left-hand or right-hand side). The special

configuration where the top polygon degenerates into a 1 x m rectangle has been
counted twice and therefore we substract the corresponding term in the summation.

I

AT AT

Figure 3. The second special case of polygons with concavity one where the top polygon
is an inverse corner polygon and the main polygon is a comer polygon.
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Figure 4 The third special case of polygons with concavity one where the p polygon is
an inverse comer polygon (but not pyramid polygon) and the main polygon is an inverse

pyramid polygon.

Consider the second case as shown in figure 3 where the top polygon is an inverse
corner polygon and the main polygon is a corner polygon. The generating function is

[» o] [+ v}
Gz(:t,y)=2yzz Z x—dea+b+c+de‘+e' (11)

a=0b,c,d,e=1

The factor of two is due to the fact that each polygon as shown in figure 3 corresponds
one-to-one with another polygon which is obtained from the original one by reflection
along the vertical direction.

Consider the third case as shown in figure 4 where the main polygon is an inverse
pyramid polygon and the top one is an inverse corner (but not pyramid) polygon.
The generating function is

[e.=]

Gs(z,v) =2y ) 2™ *(Hy- P))Poyorar (12)

a,b,c,d=1

-

Flgure 5. The fourth special case of polygons with concavity one where the top polygon
is ap inverse corper polygon {but not pyramid polygon) and the main polygon is a corner

polygon.

Consider the fourth case as shown in figure 5 where the main polygon is a
corner polygon and the top one is an inverse corner (but not pyramid) polygon. The
generating function is

Gy(z, ) =207 D = 2(Hy— PDH,ppiera: (13)

a=0b,c,d=1
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|-—u--b-|-—c—+—d-i'-e‘*

Figure 6. The fifth special case of polygons with concavity one where the top polygon is
a pyramid polygon and the main polygon is a corner polygon.

Consider the fifth case as shown in figure 6 where the top polygon is a pyramid
polygon (but not a 1 x m rectangle) and the main polygon is a corner polygon. The
generating function is

[« =] o0
Gi(z,y) = 2y2 Z Z mga(x_zde - yz)Hb+c+d+e . (14)
a,b,c,d=1¢e=0

-t—a-lt-b—hlﬁ—c—-lf-d-l-e-

Figure 7. The sixth special case of polygons with concavily one where the top polygon
is a pyramid polygon and the main polygon is a convex polygon.

Consider the sixth and final case as shown in figure 7 where the top polygon is a
pyramid polygon and the main one is a convex polygon. The generating function is

(o] o
Ge(z,y) = 3 Z Z Ra+b+c+d+e(2$_2dpd - v (13)
a,e=0bec,d=1

We use the computer algebra program REDUCE to calculate the generating func-
tion and the final result is

G,=G +G+ G+ G+ G+ Gy

= 42y’ A2, y) /(1 -2} A%+ 2*y? B(w, y) /(1-)[(1-27)" -y "] A
= z%y% + 72%y% + 82%y% + 262195 + 9225y% + 29250 + ... (16)
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where
A=(1-a?)P ~y? (1~ 224 +32Y) + 63t (1~ 2 - 2452 - 22 + =) +°
B = —4(1 —z*)® 4+ 8y(1 — 22)%(3 + 22%) — y*(1 — «*)*(60 4 3527 + 102* — =°)
+ y%(1 - %)%(80 - 3z% + 282% 4 92° — 22%)

2
+2y%(~30 + 3

12 12m4 17
wr L el T L T

zt +372° 4+ 72°

—~ LAY
£ o

+2y1%(12-522 170 —232% 4+ 23) -y (4522 - 24244+ %) -3y 22,
When r = y we have
G=4G, = 162°A/(1 —2)(1-42®)¥? 4+ 42 B/(1 - =¥ (1 - 322 + z*)(1 — 42?)®

= N.z" =4z'? + 602! + 5882'° + 463628 + . + - 4 -
(7)

where

A=1-9z" 4 25z — 232° + 328

B =—4+562>-300c*+7732°-9732%4 53527 — 90217 4 24214,
Expanding the generating function (17) about the singularity at 22 = %, we obtain

G =(128)" 11 — 42%)~* - 3(256)" (1 — 422)"%? 4 O(1 — az™)"2, (18)

It follows from the series expansions

(1 -42H)3 = i(m+1)(m+2)22m—11_2m (19)

m=0

(1-42”)7%2= 3" (2m+ 3)lc’™ /6(m + 1)!m!
that m
N, =n?2" 11 - 4(2/nm) /2 + O(1/n)] (20)

n

which confirms the conjecture (2) of Enting ef al (1991) for ¢ = 1.
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